Узнайте свой гороскоп совместимости:


Семья и дети
Кулинарные рецепты
Медицина и здоровье
Красота и косметика
Праздники и подарки
Значение имен
Цитаты и афоризмы
Комнатные растения
Мода и стиль
Сонник
Магия камней
Гороскопы
Аудиосказки
Искусство
Фонотека
Фотогалерея
Путешествия
Работа и карьера

Детский сад.Ру >> Электронная библиотека >> Семья и дети >> Обучение в детском саду >>

ПОРЯДКОВЫЙ СЧЕТ


В старшей группе дети уже знакомились с порядковым счетом. Однако опыт показывает, что многие дети 6 лет не различают порядковые и количественные числительные, не осознают их значение.
В подготовительной к школе группе порядковому счету должно быть уделено большое внимание. У детей расширяют представление о том, в каких случаях люди пользуются порядковым счетом, когда они прибегают к нумерации и с какой целью (нумеруют дома, квартиры, детские сады, места в театре, в кино, транспорте и т. п.).
Дети 6—7 лет полнее начинают осознавать значение порядкового счета и усваивают, что вопросы который? какой по счету? требуют особого пересчитывания. При этом каждый предмет получает свой номер в ряду, и для ответа на вопрос на котором месте? или который по порядку? существенное значение имеет направление счета. Дети узнают, что при определении порядкового номера принято считать слева направо, а в иных случаях — указывать, в каком направлении велся счет (четвертый сверху, пятый снизу, третий справа).
Для лучшего осознания детьми значения порядкового счета его постоянно сопоставляют с количественным счетом, чередуя вопросы сколько? какой по счету?
Продолжают учить детей различать вопросы какой по счету? который? какой? Последний направлен на выделение качественных признаков объектов. Какие задачи решают дети в процессе упражнений в порядковом счёте?
Определяют место предмета среди других. («Сколько всего флажков? Какой по порядку синий флажок? Какого цвета восьмой флажок?») Находят предмет по его порядковому номеру, при этом выполняют различные задания. («На место четвертой матрешки поставьте неваляшку. Замените шестой синий кружок красным. Поверните третий квадрат другой стороной вверх. Дайте флажки второму, четвертому и шестому мальчикам».)
Располагают предметы в указанном порядке и одновременно определяют пространственные отношения между ними: впереди, после, за, между: «Расставьте игрушки так, чтобы первой была матрешка, второй — неваляшка, третьим — мишка. Поставьте куклу между вторым и третьим номерами...» Задают вопросы: «Какая по счету кукла? А мишка? Сколько всего игрушек? Кто стоит перед неваляшкой? Которая по счету неваляшка?»
Сопоставляют 2 множества предметов, расположенных в 1 ряд, отвечая на вопросы: «Сколько елочек? На котором месте елочки? Сколько березок? На котором они месте? Каких деревьев больше: елочек или березок?»
Рисуют предметы или геометрические фигуры, а также закрашивают их карандашами разных цветов в указанном порядке. («Синим карандашом раскрасьте второй, седьмой и восьмой кружки».)
Находят место в строю, перестраиваются по указанию воспитателя. Например, воспитатель вызывает 4—5 детей, предлагает им встать друг за друга, пересчитаться, поднять руку, хлопнуть в ладоши, присесть. Детей, занимающих определенные порядковые места, просит поменяться местами, предлагает кому-либо из детей встать, например, между третьим и четвертым номерами. Одновременно ребята упражняются в выделении порядковых отношений, определяют, кто стоит перед Олей, за Олей, между Леной и Аней и т. п.
Целесообразны игры с мячом. Дети выстраиваются шеренгой и пересчитываются. Тот, кому ведущий бросил мяч, называет свой порядковый номер. Порядковый номер может называть ведущий. Например, он говорит: «Шестой!» Ребенок, стоящий на шестом месте, делает шаг вперед, произносит: «Я шестой!» — и ловит мяч.

ЗАКРЕПЛЕНИЕ ЗНАНИЯ О ВЗАИМНО-ОБРАТНЫХ ОТНОШЕНИЯХ МЕЖДУ ЧИСЛАМИ



Детей 6—7 лет знакомят не только со связями, но и с отношениями между смежными числами (на сколько одно из смежных чисел больше или меньше другого).
От упражнений в сравнении численностей множеств предметов, выраженных смежными числами, они переходят к сравнению чисел без опоры на наглядный материал. Такой переход намечается с первых занятий. Закрепляя знания об образовании чисел второго пятка, воспитатель спрашивает детей: «Какое число получится, если к 6 добавить 1?» Или: «Как получить 6 предметов, если есть 5 предметов?» И т. п.
Позднее дети сравнивают группы предметов разных размеров, занимающие больше или меньше места. В данном случае они не могут опереться на внешнее впечатление и находят ответ, пересчитывая предметы и сравнивая числа, т. е. опираются на понимание связей между числами. Однако для обобщения данных знаний требуются специальные упражнения, каждое из которых решает и свои частные задачи. Обобщению знаний о взаимно-обратном характере отношений между смежными числами способствуют упражнения на разностное сравнение чисел, которые вначале проводятся с опорой на наглядный материал. Например, детям предлагают отсчитать, положить игрушки, хлопнуть в ладоши, поднять руку, подпрыгнуть и т. п. на 1 раз больше или меньше, чем поставлено игрушек, чем нарисовано кружков на карточке или чем то число, которое называет воспитатель: «Хлопни в ладоши на 1 раз больше (меньше), чем у меня здесь матрешек. Сколько раз ты хлопнул? Почему?» Другой вариант: «Сколько кружков на карточке? Сколько ты поставишь елочек, чтобы их было на 1 больше (меньше)? Почему?» Более сложное задание: «На верхнюю полоску карточки положите на 1 кружок больше, чем у меня. На нижнюю полоску положите на 1 кружок меньше, чем на верхней полоске. Сколько кружков на моей карточке? Сколько кружков у вас на нижней полоске? Почему у вас на нижней полоске столькб же кружков, сколько у меня?» Каждый раз дети объясняют, как было получено то или иное число, сравнивают смежные числа, устанавливают разностные отношения между ними. («Надо поставить 7 елочек, потому что у вас на карточке 6 кружков, а вы просили поставить на 1 елочку больше, чем кружков. 7 больше 6 на 1, а 6 меньше 7 на 1».) В ответах детей обязательно должен находить отражение взаимно-обратный характер отношений между смежными числами. В итоге данных упражнений можно перейти к сравнению чисел и без опоры на наглядный материал. («Назови число, большее 7 на 1. На сколько 8 больше 7? Какое число меньше 7 на 1? Объясни, почему назвал 6».) Упражнениям на разностное сравнение чисел отводят не менее 2—3 занятий. В дальнейшем к этому вопросу следует периодически возвращаться до конца учебного года.
Закрепить знания детей о порядке следования чисел позволяют упражнения в увеличении и уменьшении числа на 1. Воспитатель ставит 1 предмет (флажок, матрешку), спрашивает: «Какое число получится, если я добавлю 1 предмет? Почему?»
Так постепенно дети составляют группу из 10 предметов. Группу пересчитывают, попутно выясняют, который предмет по счету последний. Аналогичным образом проводят и упражнения в уменьшении числа на 1. Воспитатель задает вопросы: «Сколько всего грибов? Сколько их будет, если я 1 уберу? Почему?» И так до тех пор, пока не останется 1 предмет. Данным упражнениям отводят 3 занятия. Строят их по-разному. Первое занятие целиком посвящают упражнениям в увеличении числа на 1, второе — в уменьшении числа на 1, а третье — как в увеличении, так и в уменьшении чисел с использованием одного и того же материала, а также упражнениям на разностное сравнение чисел. Но можно на всех 3 занятиях давать детям упражнения как на увеличение, так и на уменьшение чисел, если ребята усвоили разностные отношения между числами. Внимание их должно быть акцентировано на принципе построения натурального ряда.
В интересной форме закрепить знания прямой и обратной последовательности чисел позволяют упражнения с лесенкой. Дети шагают по ступенькам лесенки то вверх, то вниз, считая либо количество ступенек, которые они уже прошли, либо то число ступенек, которое им еще осталось пройти, т. е. ведут счет то в прямом, то в обратном порядке. «Давайте сосчитаем, сколько ступенек до неваляшки», «Будем считать, сколько ступенек нам осталось пройти до неваляшки (10, 9, 8, 7...)».
Для упражнения детей в прямом и обратном счете используют числовую лесенку. Упражнения с числовой лесенкой позволяют закрепить знания о связях и отношениях не только между смежными числами, но и между остальными числами в ряду. Кроме того, они помогают осознать значение слов до и после.
Проводят ряд упражнений с числовыми фигурами. Например, вдоль доски в ряд педагог расставляет числовые фигуры с количеством кружков от 1 до 10; 2 фигуры он помещает не на свои места, детям предлагает определить, какие фигуры «заблудились». Ряд числовых фигур может быть выстроен как в прямом, так и в обратном порядке.
В итоге занятия проводят игру «Разговор чисел». Педагог вызывает несколько детей, дает им числовые фигуры и говорит: «Вы будете числа, а какие — вам подскажет карточка! Числа, встаньте по порядку, начиная с самого маленького». После проверки воспитатель вызывает «числа» и говорит: «Число 4 сказало числу 5: «Я меньше тебя на 1!» Что же число 5 ответило числу 4? А что оно сказало числу 6?» И т. д.
Вначале опираясь на числовой ряд, представленный в виде схемы, а затем без опоры на наглядный материал дети отвечают на такие вопросы: «Какое число надо назвать при счете до 2, 3, 4? Перед каким числом называют число 5? После какого числа называют число 8? Какое число больше, чем 7, на 1? Какое меньше? Почему?» И т. п.
Надо следить за тем, чтобы дети обязательно называли оба сравниваемых числа. Это важное условие осознания того, что каждое число (кроме 1) больше одного, но меньше другого, смежного с ним, т. е. понимания относительности значения каждого числа. Постепенно дети усваивают, что выражение «до» требует назвать число меньше данного, а выражение «после» - больше данного.
Важно, чтобы дети научились быстро и уверенно вести счет от 1 до 10 в прямом и обратном порядке, т. е. прочно усвоили последовательность первых 10 натуральных чисел. Этому способствуют разнообразные упражнения в счете, которые проводят без опоры на наглядный материал. («Посчитай от 1 до 10. Посчитай в обратном порядке. Какое число идет до 5? А после 5? Назови 3 числа, которые идут после 4, а теперь — до 4. Угадай, какое число пропущено между числами 6 и 8, 5 и 7 и в обратном порядке: 7 и 5, 8 и 6. Назови числа, соседние 7. Назови 2 числа, пропустив между ними 1. Назови 3 (4) числа, пропустив между ними 1».)
Проводят игры «Считай дальше», «Кто знает, пусть дальше считает».
Интерес к таким упражнениям повышается, если они проводятся в кругу и воспитатель не просто вызывает ребенка, а бросает ему мяч, платочек и т. п.
Важно, чтобы в поиске нужного числа дети не вели счет от 1, а ориентировались на связи и отношения между смежными числами. Если окажется, что кто-либо из детей не в состоянии этого сделать, необходимо вернуться к упражнениям в сравнении совокупностей предметов, т. е. к сравнению чисел с опорой на наглядный материал.
Упражнения в устном счете проводят во II и III кварталах, они предпосылаются ознакомлению детей с приемами вычисления при решении арифметических задач. В конце учебного года полезно предлагать детям рассказывать о том, что они знают о тех или иных числах (7 и 8, 6 и 5).
Если в своих ответах дети укажут на то, что 7 больше 6, а 6 меньше 7 на 1, число 7 содержит 7 единиц, а 6 — только 6, или: чтобы получилось 7, надо к 6 добавить 1, а чтобы получилось 6, надо от 7 отнять 1, или: число 6 идет до 7, а 7 — после 6, то можно с уверенностью сказать, что ребята хорошо усвоили знания о числе в объеме требований программы и готовы к усвоению вычисления.

СОСТАВ ЧИСЛА ИЗ 2 ЧИСЕЛ, МЕНЬШИХ ЭТОГО ЧИСЛА



В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Детей знакомят не только с разложением числа на 2 меньших, но и с получением числа из 2 меньших чисел. Это способствует пониманию детьми особенностей суммы как условного объединения 2 слагаемых.
Детям показывают все варианты состава чисел в пределах пятка.
Число 2 — это 1 и 1,
- 3 — это 2 и 1, 1 и 2,
4 — это 3 и 1, 2 и 2, 1 и 3,
5 — это 4 и 1, 3 и 2, 2 и 3, 1 и 4.
Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», — говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» — спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего — из 3 разноцветных кружков.
Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.
Для закрепления знаний детей о составе числа из 2 меньших чисел используют разнообразные упражнения с предметами и моделями геометрических фигур. Детям предлагают рассказы-задачи, например: «На верхнем проводе сидели 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они еще могут сидеть?» (Ласточек на наборном полотне пересаживают с провода на провод.) Или: «Вере подарили 4 карандаша. Она поделилась с Аней. Как она могла разделить карандаши?» С этой же целью дают задания: одному ребенку взять 3 камешка (желудя) в обе руки, а остальным догадаться, сколько камешков у него в каждой руке; разделить группу из 3 (4, 5) игрушек между 2 детьми; нарисовать 2 разновидности фигур, например круги и квадраты, всего 4 фигуры; полезно рассмотреть с детьми числовые фигуры, на которых кружки расчленены на 2 группы.
Выполнив то или иное задание, дети каждый раз рассказывают о том, на какие 2 группы расчленена совокупность, сколько всего предметов в нее входит, и делают обобщение о составе числа из 2 меньших чисел. Например, ребенок говорит: «Я взяла 2 зеленые и 1 желтую ленточку, а всего 3 ленточки. Число 3 можно составить из 2 и 1; 2 и 1 вместе составляют 3».
Важно приучить детей по-разному строить ответы: идти как от частного к общему, так и от общего к частному: «Всего я нарисовал 4 фигуры: 3 квадрата и 1 фигуру овальной формы».
Не менее важно побуждать детей устанавливать отношение между целым и частями, т. е. делать вывод о составе числа: «Число 4 можно составить из 3 и 1; 3 и 1 вместе составляют 4».
Для подведения детей к обобщению им дают такие задания: педагог показывает карточку, на которой изображено от 3 до 5 предметов, но часть их он закрывает и говорит: «На карточке нарисованы 4 зайчика. Угадайте, сколько зайчиков я закрыла». Педагог берет 2 числовые фигуры, одну из них, например с 3 кружками, показывает детям, а вторую поворачивает к ним обратной стороной и спрашивает: «Сколько кружков на перевернутой карточке, если на 2 карточках вместе 5 кружков? Как вы догадались?»
Можно побуждать детей находить в групповой комнате примеры разложения числа на 2 группы. Например, в групповой комнате может оказаться 2 шкафа с игрушками и 1 с пособиями, а всего 3 шкафа; 2 больших мишки и 3 маленьких, а всего 5 мишек и т. п.
Знакомство с составом числа из 2 меньших чисел обеспечивает переход к обучению детей вычислению.


Л.С.Метлина, "Математика в детском саду", пособие для воспитателя детского сада, М., 1984 г.
OCR Detskiysad.Ru





Популярные статьи сайта из раздела «Сонник»



Когда снятся вещие сны?


Достаточно ясные образы из сна производят неизгладимое впечатление на человека. Если через какое-то время события во сне воплощаются наяву, то люди убеждаются в том, что сон был вещим. Вещие сны отличаются от обычных тем, что они, за редким исключением, имеют прямое значение. Вещий сон всегда яркий, запоминающийся...

Прочитать полностью >>



Почему снятся ушедшие из жизни люди?


Существует стойкое убеждение, что сны про умерших людей не относятся к жанру ужасов, а напротив часто являются вещими снами. Так, например, стоит прислушиваться к словам покойников, потому что все они являются прямыми и правдивыми, в отличие от иносказаний, которые произносят другие персонажи наших сновидений...

Прочитать полностью >>



Если приснился плохой сон...


Если приснился плохой сон, то он запоминается почти всем и не выходит из головы долгое время. Часто человека пугает даже не столько содержимое сновидения, а его последствия, ведь большинство из нас верит, что сны мы видим не напрасно. Как выяснили ученые, плохой сон чаще всего снится под утро...

Прочитать полностью >>





.

К чему снятся кошки


Согласно Миллеру, сны, в которых снятся кошки – знак, предвещающий неудачу. Кроме случаев, когда кошку удается убить или прогнать. Если кошка нападает на сновидца, то это означает...

Читать статью >>
.

К чему снятся змеи


Как правило, змеи – это всегда что-то нехорошее, это предвестники будущих неприятностей. Если снятся змеи, которые активно шевелятся и извиваются, то говорят о том, что ...

Читать статью >>
.

К чему снятся деньги


Снятся деньги обычно к хлопотам, связанным с самыми разными сферами жизни людей. При этом надо обращать внимание, что за деньги снятся – медные, золотые или бумажные...

Читать статью >>
.

К чему снятся пауки


Сонник Миллера обещает, что если во сне паук плетет паутину, то в доме все будет спокойно и мирно, а если просто снятся пауки, то надо более внимательно отнестись к своей работе, и тогда...

Читать статью >>






Что вам сегодня приснилось?


.

Как одеваться стильно и недорого?


Как быть, если зарплата не так велика, чтобы вы могли позволить себе покупать каждую понравившуюся вещь? Только не впадать в уныние! Каждая женщина в состоянии выглядеть исключительно стильно, тратя на обновление своего гардероба вполне посильные суммы.

читать далее >>

Брак по расчету: возможно ли счастье?


Еще совсем недавно многие полагали, что брак по расчету - это архаический пережиток прошлого, наследие минувших времен. Но, как показывает современная действительность, этот вид брачного союза благополучно существует и ныне.

читать далее >>


.

Совместимость имен в браке и любви


Психологи говорят, что совместимость имен в паре создает твердую почву для успешности любовных отношений и отношений в кругу семьи.

Если проанализировать ситуацию людей, находящихся в успешном браке долгие годы, можно легко в этом убедиться. Почему так происходит?

прочитать полностью >>

.


Сочетание имени и отчества


При выборе имени для ребенка необходимо обращать внимание на сочетание выбранного имени и отчества. Предлагаем вам несколько практических советов и рекомендаций.

Читать далее >>


Сочетание имени и фамилии


Хорошее сочетание имени и фамилии играет заметную роль для формирования комфортного существования и счастливой судьбы каждого из нас. Как же его добиться?

Читать далее >>

.

Снится беременность?


В каждом соннике свое толкование снам о беременности. Какие-то сонники сулят нехорошие события в реальной жизни, а какие-то обещают позитив.

Присниться беременность может в любом возрасте и лицу не только женского, но и мужского пола.

Беременность – это символ богатства, творчества или половой зрелости. Но есть и такие ситуации, которые следует растолковывать...

прочитать полностью >>

.


Сны и будущее


Подлинные вещие сны, передающие нам подсказки и важную информацию, обычно коротки по сюжету, и сам сюжет настолько необычен, что...

Читать далее >>


По ту сторону сна


Ореол мифов и загадок окружал сновидения с давних времен. Правители нанимали колдунов, умеющих толковать значения образов, чтобы...

Читать далее >>

.

Заговоры: правда или вымысел?


Вера в силу произнесенного слова кажется неистребимой. Но оправдана ли она? Для ответа на этот вопрос сначала следует подробнее рассказать о том, что представляют собой заговоры.

читать далее >>

Сглаз и порча: что это?


Каждый слышал о порче и сглазе, однако не все относятся к этому серьезно. А зря! Человек представляет собой сложную систему, состоящую не только из физического тела.

читать далее >>

.

Уход за собой в домашних условиях


Очевидно, что уход за собой необходим любой девушке и женщине в любом возрасте. Но в чем он должен заключаться? С чего начать?

Представляем вам примерный список процедур по уходу за собой в домашних условиях, который вы можете взять за основу и переделать под себя.

прочитать полностью >>

.


Магический приворот


Приворот является магическим воздействием на человека помимо его воли. Принято различать два вида приворота – любовный и сексуальный. Чем же они отличаются?

Читать далее >>


Здоровый сон


Расстройство сна говорит, прежде всего, о ярком нарушении биоэнергетического баланса в вашем организме, что в итоге может привести к плачевным результатам...

Читать далее >>

.

Камни-талисманы


Благородный камень – один из самых красивых и загадочных предметов, используемых в качестве талисмана.

Согласно старинной персидской легенде, драгоценные и полудрагоценные камни создал Сатана.

Как утверждают астрологи, специалисты по оккультным наукам и ювелиры, неправильно подобранный камень для талисмана может стать причиной страшной трагедии.

прочитать полностью >>

Имя и судьба


Не последнюю роль в судьбе человека играет имя, которое подарили ему родители. О влиянии имени на судьбу известно давно.

Читать полностью >>

Имя и карьера


Наряду с характером и судьбой, имя определяет и профессию – на каком поприще человек сможет наиболее успешно построить карьеру.

Читать полностью >>

Имя и здоровье


Имя человека влияет на все аспекты его жизни, в том числе и на состояние его здоровья. На этом знании основаны магические обряды и заговоры.

Читать полностью >>

Имя и характер


Имя оказывает огромное влияние на характер человека. Оно способно смягчить или усилить его наклонности и отдельные черты.

Читать полностью >>
 

Написать нам    Поиск на сайте    Реклама на сайте    О проекте    Наша аудитория    Книжные новинки    Библиотека    Задать вопрос юристу    Организация лечения за рубежом    Главная страница
   При цитировании гиперссылка на сайт Детский сад.Ру обязательна.       наша кнопка    © Все права на статьи принадлежат авторам сайта, если не указано иное.    16 +